我国科研团队在AI扩散动力学领域取得重要进展

我国科研团队在“AI+扩散动力学”领域取得重要进展 10月18日,记者从哈尔滨工业大学(深圳)获悉,该校计算机科学与技术学院张永兵教授团队与清华大学自动化系季向阳教授团队合作,在“AI+扩散动力学”领域取得重要研究进展,为AI助力人类进一步深入理解异常扩散与复杂动力学行为迈出开创性一步。相关研究成果于近日发表在《自然·计算科学》上。 在将深度学习方法应用于异常扩散的识别与表征过程中,如果观测轨迹缺失了训练扩散模型所需的关键特征,该方法将难以准确识别观测现象,进而引发误识别的风险。这一潜在的错误识别问题,成为了阻碍深度学习方法在扩散动力学实际研究中应用的重大障碍。 为此,研究团队针对现实世界场景中的复杂与未知扩散动力学行为,首次提出可靠识别异常扩散的深度学习框架,并借助人工智能驱动的科学研究改变现有扩散评估模式,探讨了深度学习从经验观察中发现和分析未知扩散模式的机会。 记者了解到,鉴于本研究的新颖性和重要性,《自然·计算科学》期刊邀请美国科罗拉多州立大学电气和计算机工程系阿德里安·帕切科·波佐博士和迭戈·克拉普夫教授对这一成果进行解读与评述。他们认为,该成果加强了人们对异常扩散的理解,同时为使用深度学习进行分布外检测促进新理论发展注入了新动力。

猜你喜欢